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A Comparison of Two Approximations for the

Capacitance of a Circle Concentric with a Cross

Henry J. Riblet

Abstract —The maximum and minimnm capacitances on circles con-

centric with an internal cross are determined for a four-lobed as well as
an eight-lobed eqnipotential distribution. The average and geometric

mean of these extreme capacitances are then compared with the exact
capacitance. The increased accuracy obtained from the eight-lobed

eqnipotential distribution is presented in graphical form.

I. INTRODUCTION

Oberhettinger and Magnus [1, p. 44] showed how the interior

of a regular polygon can be mapped into the interior of a circle,

and later Laura and Luisoni [2] showed how the exterior of a

regular polygon can be mapped onto the exterior of a circle. In

the latter case, circles exterior to the circle can be mapped back

onto equilobed curves exterior to the polygon. Laura and Luisoni

obtained power series for these transformations and showed

that these equilobed curves approach circles as they become

increasingly distant from the inner polygon. In this short paper,

for the special case considered, it will be shown how equilobed

curves of this type em be replaced by circles with only a small

change in capacit ante.

The case in which the inner polygon is a cross is of interest in

this connection. In the first place, the exact solution to the

problem of determining the capacitance of a cross in a circle is

known [3, p. 1821] so that the accuracy of any approximate

solution is available. Moreover, it will be shown that the method

used in [1] and [2], when applied to mapping the exterior of a

circle onto the exterior of cross, results in an integral which can

be evaluated in closed form. This makes it a simple matter to

determine the four-lobed curves bounding the region about the

cross into which the area between the concentric circles is

mapped. Another approximate solution to this problem is pro-

vided by the known mapping of the region between a cross and

a square onto a rectangle [4]. In this case the equilobed curve

surrounding the cross is eight-lobed. This short paper compares

the accuracy of the four-lobed approximation with that of the

eight-lobed approximation. In the first place, it is found that the

relative difference between the maximum and minimum “effec-

tive’- capacitances of the eight-lobed ctnves Is about an order of

magnitude lower than the same difference in the four-lobed

curves, for comparable geometries. Moreover, it is shown that

the average and the geometric means of the maximum and

minimum “effective” capacitances on the multilobed curves are

excellent approximations to the exact values. In fact, the error in

the average of the maximum and minimum “effective” capaci-

tances decreases exponentially as their relative difference de-

creases so that the average value for the eight-lobed case is a

better approximation than the average for the four-lobed case

by at least an order of magnitude, in the cases of most interest.

II. THE EXACT SOLUTION

Fig. 1 shows the successive mapping of a quadrant of a circle

onto the upper half plane. The transformation

1() 1
t=–i z+–

z
(1)

maps the upper right-hand quadrant of the circle onto the upper

half plane so that two arms of the cross fall on the real and

imaginary axes as shown in Fig. 1. Then the further transforma-

tion

~=fz (2)

maps the upper right-hand quadrant of the t plane onto the

upper half of the w plane. The capacitance, C, in the upper half

w Plane, between the line segment, ~a, and the infinite line

segment, bg, is given by the well-known formula [5, p. 58]

K(k)

c= K’(k)
(3)

where, in our case,

~,= (a- f)(g-b)

(ra)(b -f)
(4)

882(1+84)
——

(1+8’)4 “
(5)

The total capacitance, CO, of the cross in the circle is then

given by

.,=4* (6)

where k is given by (5) and 8 is the ratio of the length of the

arms of the cross to the radius of the circle.

The AGM series [6, p. 331], where the convergence is very

rapid, was used to calculate K and K’, given k. It is values

obtained in this way that are considered in this paper to be

exact.

III. THE FOUR-LOBED CASE

The problem of mapping the exterior of a circle onto the

exterior of a cross is solved by combining the ideas of Laura and
Luisoni [2] with those of Oberhettinger and Magnus [1, p. 42]. It

is found that the required transformation is given by the integral

1 ~ Z4–1
w=— J dz .

2 0 Z*LZ7

In turn, this can be integrated in closed form to give

(7)
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iz’ + 1
w=_—__———

2Z “
(8)

That this function maps the unit circle in the z plane of Fig, 2

onto the unit cross in the w plane is readily seen by replacing z
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1’

I Z- plane

in (8) by exp (.jf?). Then

w={=.

Now (8) can readily be inverted to give

.=~.

Fig. 1. z, t,and w coordinate planes.

W - glane

Fig. 2. w and

(9)

(lo)

Here the sign ambiguities have been resolved so that the real

axis to the right of (1, O) in the w plane maps into the real axis to

the right of (1, O) in the z plane.

t - plane

-(:
coordinate planes.

W- plane

w

—1. 954+

Z - plane

Outside of the cross in the z plane of Fig. 2 is a circle, of

radius 1.429, whose capacitance with respect to the cross we can

approximate with tlhe help of (10). This is done by using (10) to

map circles in the M?plane onto four-lobed curves in the z plane

where the potential at any point with respect to the unit circle is

simply the logarithm of its distance to the origin. In the example

of Fig. 2, points A and B in the z plane map into points A and

B in the w plane. This then determines the potential, P, of

every point on the circle in the w plane with respect to the

cross, since potentials are invariant under conformal transfor-
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TABLE I
COMPARISONOF ACCLJRACYOFMEAN AND AVERAGE CAPACITANCES

8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

c max 0.22X 10-4 O.66X1O-3 O.53X1O-* 0.25x10-] 0.91x 10-1 0.28 0.78 2.14 6.59 14.13
(cmax––c::n)/ co 0.9::.10-5 0.20X 10-3 O.13X1O-2

.“., - co

0.51x 10-2 O.15X1O-’ 0.38x 10-’ 0.87x10-1 0.19 0.44 0.76
c –0.32x 10-7 –0.95x 10-o –0.84x 10-5 –0.14x 10-4 0.37X 10-3 o.50x lo-~ 0.43x 10-1 0.39 1.55
c mean - co < 10–~ –O.49X1O-7 –0.18x 10-5 –0.z4x 10-J –O.lSX 10-3 –0.95X 10-3 –0.35X 10-2 –0.73X 10-2 O.35X1O-’ 0.28

mation. The relationship between the geometrical capacitance,

C, and the potential P, C = 277/P, permits the association of

an “effective” capacitance with every point on the circle exterior

to the cross. It is clear that the maximum value of this varying

capacitance will occur on the coordinate axes while the mini-

mum value will occur just half way between them. For any value

of 8, the ratio of the length of the arms of the cross to the

radius of the circle (in Fig. 2, 8 = 0.7), it is an easy calculation to

determine the maximum value of the “effective” capacitance,

c ~a,, and the minimum value of the “effective” capacitance,

C~i.. Table I gives the difference between the average as well as

the mean of these maximum and minimum values and the

“exact” value, CO. Not only are the average and the mean good

approximations to the exact value, but the errors decrease

rapidly as the relative difference, (C~~ – C~i~)/’ Co, between

maximum and minimum values decreases. For the example

considered, where S = 0.7, the relative difference between the

maximum and minimum values is 0.086 while the error in the

average is 0.005; but for 8 = 0.6, where the relative difference is

0.034, the error in the average has decreased to 0.00037. It will

be shown that the error decreases exponentially with the relative

difference between the maximum and minimum “effective” ca-

pacitances.

IV. THE EIGHT-LOBED CASE

Bowman [5, p. 67] has discussed the problem of mapping two

noncontiguous segments of a rectangle onto two opposing sides

of a rectangle. It is this method which Riblet [4] has used to map

the upper right-hand square of the z plane in Fig. 2 into the

rectangle in the w plane.

In the first place, the transformation

s=sn(z, ~) (11)

maps the upper right-hand square of the z plane into the upper

right-hand quadrant of the s plane. There corresponding points

are denoted by the same letters. Not shown, however, is a

necessary scaling transformation which maps the square of side

s into one of side K(~). Then the transformation

t=sz (12)

maps the upper right-hand quadrant of the s plane into the

upper half t plane. The linear transformation

t–e
~=— (13)

a—e

. cn2(D, ~)t+sn2(D, ~)
(14)

sn2(D, ~)(l+cn2 (D,@)

where D = tK(~)/s, then maps the upper half t plane into

the upper half w plane as shown in Fig. 3. The transformation

u = u maps the upper half u plane into the upper right-hand

quadrant of the u plane, which is then mapped into the eabd

rectangle of the w plane by the elliptic integral

J
du

w. (15)
: J(l - U’)(1-PU’)

where

k2=sin’ (D, ~)(l+cn2(D, ~)). (16)

Given t/s, the principal computational problem of this case is

the determination of the radius, R .q, of that circle, as shown in

the z plane of Fig. 3, which maps into an equiripple curve in the

w plane. This, of course, requires the evaluation of the elliptic

integral of the first kind given in (15). For this purpose the

Gaussian descending transformation has been used, in which

and

(17)

l–~1–k:u~

‘“= (1- k~)uo “
(18)

Once the equiripple radius, R.q, has been found by a computer-

ized search, it only remains to search the curve in the w plane,

which corresponds to the equiripple circle in the z plane, for its

maximum value. The minimum values occur, by construction, at

O, 45°, and 90°.

The maximum and minimum values of the “effective” capaci-

tance associated with the circle of equiripple radius in the z

plane of Fig. 3 were obtained by dividing the maximum and

minimum values on the corresponding curve of the w plane into

the width of the rectangle shown in the w plane. This width is,

of course, K(k), where k is given by (16). These quotients were

then multiplied by 4 to allow for the fact that only one quadrant

of the circle in the z plane was mapped into the w plane.

Table II gives the relative difference, (C~aX – C~l.)/ CO, be-

tween the maximum “effective” capacitance and the minimum

“effective” capacitance as well as the difference between the

average and mean “effective” capacitances and the exact capaci-

tance, CO, as a function of 8. When 8 = 0.7, the relative error is

0.0063. This is an improvement over the four-lobed case of more

than an order of magnitude. The error in the average “effective”

capacitance, however, is 0.000049, which is two orders of magni-

tude less than the similar error for the four-lobed case. The

improvement is even greater for the case 8 = 0.6. For 3 = 0.5,

the improvement is three orders of magnitude.

This is shown graphically in Fig. 4, where the ordinate is

log((cmax – C~i~ \ CO) and the abscissa is log(C,v,, – CO). Here

c ,,,, = (cm,, + cmin)/’2. Here it is clear that the slope of the
line joining points on the four-lobed and eight-lobed lines hav-

ing the same value of 8 increases as 8 decreases. This figure

shows that, for a given value of (Cma – C~in)\ CO, the four-lobed



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 10, OCTOBER 1991 1787

s—

L_

/ de

t

d c

e

oa b

* t

I Z- plane

A
.

.
. \

2

t- plane

r---’

Oabc j d

1 ‘+-
l/k m (D, @

V- plane

t

e .

.
\

.
.

0 ab d i
~
sn(D,J_5) 1 A

S- plane

I
I
I .

i

k. sn(D,J’_5) &n(D,G)

—

Fig. 3. z, s, t,u,u, and w coordinate plan

TABLE II

U- plane

I

W- plane

COMPARISONOFACCURACY OF MEAN AND AVERAGE CAPACITANCES

6 0.1 0.2 0.3
—

0.4 0.5 0.6 0.7 0.8 09 0.95

– cm,” < 10-~ 0.35X 1O-’J 0.14X 10-4 0.22X 10-3
:;:x

O.19X1O-2 0.12x 10-1 0.57x 10-1 0.23 0.84 1.72
-cm,n)/co < 10–~ O.llx 10-6 0.35X 10-5 O.43X1O-4 0.31x 10-3 0.16x 10-2 063x 10-2 0.20x 10-1 0.56x 10-1 0.92x 10-1

c aver – co < 10–~ < 10-~ < 10–8 < 10–~ O.I5X1O-7 0.14x 10-5 0,49x 10-4 0.10x 10-2 0.16x 10-1 0.72x 10-1
cmean– co <10-8 < 10-~ <10–8 < 10–s –O.58X1O-7 –0.92x 10-6 0,36x 10-S 0.43x 10-3 O.lOX IO-l 0.52x 10-1

—
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Fig. 4. Comparison ofapproximation errors.

approximation is about an order of magnitude more accurate

than the eight-lobed approximation, but this result is offset by

the reduction in the values of the (C~~X–C~ln)/C’O as 8 be-

comes smaller.

V. COMMENTS

It is interesting that both Table I and Table II show that

c ~,,, – Co becomes positive for sufficiently large values of 8,

The fact that the calculation for the four-lobed case involves, at

most, the determination of K and K’ using the rapidly converg-

ing AGM series virtually rules out the possibility of a numerical

error. The computation for the eight-lobed case is more in-

volved, but here great care was taken to check the accuracy of

each step in the calculations. For example, each complex value

of w obtained by applying the Gauss descending transformation

to the given L] and k was checked for accuracy by resubstituting

into L’ = sn (w, k). It is believed that these results are accurate to

the order of 10-9.

In both cases, it will be observed that the geometric mean of

c ~ax and C~,n is a more accurate approximation than their

average. It was only because the error in the average of Cm,,

and C~,n changes sign for smaller values of 8, however, that the

logarithm of the error in the average is plotted in Fig. 4.

Needless to say, the linearity of the data for the two cases and

their parallelism were a surprise.
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A New Procedure for Interfacing the Transmission

Line Matrix (TLM) Method with

Frequency-Domain Solutions

Zhizhang Chen, Wolfgang J. R. Hoefer, and Michel M. Ney

Abstract —This paper presents a new procedure that interfaces the
transmission-line matrix method (TLM) with frequency-domain solu-
tions of electromagnetic fields. Frequency-domain solutions are trans-
formed into appropriate time-domain sequences using the discrete
Fourier transform (DFT). Hence, the corresponding boundary Johns
matrix can be determined with minimum computational effort. The

subsequent treatment consists in convolving the streams of TLM im-

pulses incident on tbe boundary with a Johns matrix generated with the
new approach. Tbe method is applied to obtain the time-domain reflec-

tion seqnence of wide-band absorbing terminations in a rectangular
waveguide in the dominant mode operation. In addition, the time-domain

analysis of pnlse penetration through a sheet with high, but finite,
conductivity is presented. Good results demonstrate the efficiency of the

proposed procedure.

1. INTRODUCTION

The transmission line matrix (TLM) method has been exten-

sively applied to solve electromagnetic wave propagation, diffu-

sion, and network problems in the time domain [1]–[3]. With its

flexibility and the simplicity of the basic algorithm, the TLM

method can handle arbitrary geometries and account for realis-

tic features that are often neglected with other methods. Re-

cently, two- and three-dimensional transmission line matrix mi-

crowave field simulators using new concepts and procedures

have been presented [4].

In order to characterize structures with large dimensions. the

TLM technique requires large memory space and CPU time.

More recently, a general partitioning technique based on the

Johns matrix concept [5], [6] has been developed to overcome

this problem for certain applications.

In the following, a new procedure for interfacing TLM tech-

niques with frequency-domain solutions is described: either scat-
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