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A Comparison of Two Approximations for the
Capacitance of a Circle Concentric with a Cross

Henry J. Riblet

Abstract —The maximum and minimum capacitances on circles con-
centric with an internal cross are determined for a four-lobed as well as
an eight-lobed equipotential distribution. The average and geometric
mean of these extreme capacitances are then compared with the exact
capacitance. The increased accuracy obtained from the eight-lobed
equipotential distribution is presented in graphical form.

I. INTRODUCTION

Oberhettinger and Magnus [1, p. 44] showed how the interior
of a regular polygon can be mapped into the interior of a circle,
and later Laura and Luisoni [2] showed how the exterior of a
regular polygon can be mapped onto the exterior of a circle. In
the latter case, circles exterior to the circle can be mapped back
onto equilobed curves exterior to the polygon. Laura and Luisoni
obtained power series for these transformations and showed
that these equilobed curves approach circles as they become
increasingly distant from the inner polygon. In this short paper,
for the special case considered, it will be shown how equilobed
curves of this type can be replaced by circles with only a small
change in capacitance.

The case in which the inner polygon is a cross is of interest in
this connection. In the first place, the exact solution to the
problem of determining the capacitance of a cross in a circle is
known [3, p. 1821] so that the accuracy of any approximate
solution is available. Moreover, it will be shown that the method
used in [1] and [2], when applied to mapping the exterior of a
circle onto the exterior of cross, results in an integral which can
be evaluated in closed form. This makes it a simple matter to
determine the four-lobed curves bounding the region about the
cross into which the area between the concentric circles is
mapped. Another approximate solution to this problem is pro-
vided by the known mapping of the region between a cross and
a square onto a rectangle [4]. In this case the equilobed curve
surrounding the cross is eight-lobed. This short paper compares
the accuracy of the four-lobed approximation with that of the
eight-lobed approximation. In the first place, it is found that the
relative difference between the maximum and minimum “effec-
tive”” capacitances of the eight-lobed curves 1s about an order of
magnitude lower than the same difference in the four-lobed
curves, for comparable geometries. Moreover, it is shown that
the average and the geometric means of the maximum and
minimum “‘effective” capacitances on the multilobed curves are
excellent approximations to the exact values. In fact, the error in
the average of the maximum and minimum “‘effective” capaci-
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tances decreases exponentially as their relative difference de-
creases so that the average value for the eight-lobed case is a
better approximation than the average for the four-lobed case
by at least an order of magnitude, in the cases of most interest.

II. Tue ExacT SoLUTION

Fig. 1 shows the successive mapping of a quadrant of a circle
onto the upper half plane. The transformation

2{++3)
t=——|z+~
2 z

maps the upper right-hand quadrant of the circle onto the upper
half plane so that two arms of the cross fall on the real and
imaginary axes as shown in Fig. 1. Then the further transforma-
tion

e

w=t?

(2)
maps the upper right-hand quadrant of the ¢ plane onto the
upper half of the w plane. The capacitance, C, in the upper half
w plane, between the line segment, fa, and the infinite line

segment, bg, is given by the well-known formula [5, p. 58]
K(k)
=N (3)
K'(k)

where, in our case,

_(a-1)(e-b)
(8 —a)(b—f)

3 86%(1+8%)

st

ke (4)

(5)

The total capacitance, Cy, of the cross in the circle is then
given by

K(k)

o=4m (6)

where k is given by (5) and & is the ratio of the length of the
arms of the cross to the radius of the circle.

The AGM series [6, p. 331], where the convergence is very
rapid, was used to calculate K and K', given k. It is values
obtained in this way that are considered in this paper to be
exact.

III. Tue Four-LoBep CASE

The problem of mapping the exterior of a circle onto the
exterior of a cross is solved by combining the ideas of Laura and
Luisoni [2] with those of Oberhettinger and Magnus [1, p. 42]. It
is found that the required transformation is given by the integral

1 ., z%-1
w= ) '[O m dz. (7)
In turn, this can be integrated in closed form to give
vzt +1
w=—— (8)

2z

That this function maps the unit circle in the z plane of Fig. 2
onto the unit cross in the w plane is readily seen by replacing z
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IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 10, OCTOBER 1991

1785

s
[
1-4° g
26
- d_¢ f @ b
-1 1 x _1+52 -1 1182 T
26 26
Z - plane - plane
v
/C g f a b
_(1_—_62>2 <1+52>2 u
26 26
Ww - plane
Fig. 1. z, ¢, and w coordinate planes.
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in (8) by exp(j@). Then

w=ycos28 .

Now (8) can readily be inverted to give

(1, 0)

z=Vwr+Vwt-1.

Here the sign ambiguities have been resolved so that the real
axis to the right of (1,0) in the w plane maps into the real axis to
the right of (1,0) in the z plane.

w - plane

Fig. 2. w and z coordinate planes.

®)

(10)

(1, 0)

Outside of the cross in the z plane of Fig. 2 is a circle, of
radius 1.429, whose capacitance with respect to the cross we can
approximate with the help of (10). This is done by using (10) to
map circles in the w plane onto four-lobed curves in the z plane
where the potential at any point with respect to the unit circle is
simply the logarithm of its distance to the origin. In the example
of Fig. 2, points A and B in the z plane map into points 4 and
B in the w plane. This then determines the potential, P, of
every point on the circle in the w plane with respect to the
cross, since potentials are invariant under conformal transfor-
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TABLE 1
COMPARISON OF ACCURACY OF MEAN AND AVERAGE CAPACITANCES

5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Cinax — Crn 022x10~*  0.66x1073  053x107%  025x107!  091x107!  0.28 0.78 2.14 6.59 14.13
(Cox = Co)/ Co 0.94X1075  020x1073  0.13x1072  0.51x1072  0.05x107'  0.38x107! 0.87x10"'  0.19 0.44 0.76
Caver — Co <107%  —032x10"7 —095x10"% —0.84x1075 —0.14x107% 037x107*  050x1072  043x10"! 0.39 1.55
Crean — Co <10-%  —049%10~7 —0.18x10"° -024x10"% —018x1073 -095x10"% -0.35%x10"2 -0.73x10"2 0.35x107' 028

mation. The relationship between the geometrical capacitance,
C, and the potential P, C =2+ /P, permits the association of
an “effective” capacitance with every point on the circle exterior
to the cross. It is clear that the maximum value of this varying
capacitance will occur on the coordinate axes while the mini-
mum value will occur just half way between them. For any value
of &, the ratio of the length of the arms of the cross to the
radius of the circle (in Fig. 2, § = 0.7), it is an easy calculation to
determine the maximum value of the “effective” capacitance,
Conays and the minimum value of the “effective” capacitance,
C,in- Table I gives the difference between the average as well as
the mean of these maximum and minimum values and the
“exact” value, Cy. Not only are the average and the mean good
approximations to the exact value, but the errors decrease
rapidly as the relative difference, (Cpu — Crin)/ Co» between
maximum and minimum values decreases. For the example
considered, where & = 0.7, the relative difference between the
maximum and minimum values is 0.086 while the error in the
average is 0.005; but for 6 = 0.6, where the relative difference is
0.034, the error in the average has decreased to 0.00037. It will
be shown that the error decreases exponentially with the relative
difference between the maximum and minimum “effective” ca-
pacitances.

IV. Tue Eicar-Losep CASE

Bowman [5, p. 67] has discussed the problem of mapping two
noncontiguous segments of a rectangle onto two opposing sides
of a rectangle. It is this method which Riblet [4] has used to map
the upper right-hand square of the z plane in Fig. 2 into the
rectangle in the w plane.

In the first place, the transformation

s=sn(z,\/1/—2) (1)

maps the upper right-hand square of the z plane into the upper
right-hand quadrant of the s plane. There corresponding points
are denoted by the same letters. Not shown, however, is a
necessary scaling transformation which maps the square of side
s into one of side K(y/1/2). Then the transformation

t=s? . (12)

maps the upper right-hand quadrant of the s plane into the
upper half ¢ plane. The linear transformation

_ t—e
w=—— (13)
_ cn?(D,y/1/2 )t +s0*(D,y/1/2) 19)

- sn?(D,y1/2)(1+en?(D,y1/2)

where D = tK(y/1/2)}/s, then maps the upper half ¢ plane into
the upper half w plane as shown in Fig. 3. The transformation
v =u maps the upper half u plane into the upper right-hand

quadrant of the v plane, which is then mapped into the eabd
rectangle of the w plane by the elliptic integral

v dl)
=} Tomae

(15)

where

k?=sin?(D,/1/2 )(1+cn?(D,1/2)). (16)
Given ¢ /s, the principal computational problem of this case is
the determination of the radius, R,. of that circle, as shown in
the z plane of Fig. 3, which maps into an equiripple curve in the
w plane. This, of course, requires the evaluation of the elliptic
integral of the first kind given in (15). For this purpose the
Gaussian descending transformation has been used, in which

P 17
U1+ k) a7
and
1—y/1-k§vd
Dy = —e——— (18)

(1-k5)vo

Once the equiripple radius, R, has been found by a computer-
ized search, it only remains to search the curve in the w plane,
which corresponds to the equiripple circle in the z plane, for its
maximum value. The minimum values occur, by construction, at
0, 45°, and 90°.

The maximum and minimum values of the “effective’” capaci-
tance associated with the circle of equiripple radius in the z
plane of Fig. 3 were obtained by dividing the maximum and
minimum values on the corresponding curve of the w plane into
the width of the rectangle shown in the w plane. This width is,
of course, K(k), where k is given by (16). These quotients were
then multiplied by 4 to allow for the fact that only one quadrant
of the circle in the z plane was mapped into the w plane.

Table 1T gives the relative difference, (Cppu — Crn)/ Co, be-
tween the maximum “effective” capacitance and the minimum
“effective” capacitance as well as the difference between the
average and mean “effective” capacitances and the exact capaci-
tance, C, as a function of 8. When 6 = 0.7, the relative error is
0.0063. This is an improvement over the four-lobed case of more
than an order of magnitude. The error in the average “effective”
capacitance, however, is 0.000049, which is two orders of magni-
tude less than the similar error for the four-lobed case. The
improvement is even greater for the case 6 =0.6. For § = 0.5,
the improvement is three orders of magnitude.

This is shown graphically in Fig. 4, where the ordinate is
log((C,ppx — Crnin / Co) and the abscissa is log(C,,., — Cy). Here
Cover =(Crax + Crmin)/2. Here it is clear that the slope of the
line joining points on the four-lobed and eight-lobed lines hav-
ing the same value of & increases as & decreases. This figure
shows that, for a given value of (C,,, — Cpin)/ Co, the four-lobed
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TABLE II
COMPARISON OF ACCURACY OF MEAN AND AVERAGE CAPACITANCES
5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 0.95
Comax = Conin <1078 035Xx107% 0.14x107% 022x103  0.19x10~2  0.12x10-! 057%10-! 0.23 0.84 1.72
(Crnax = Can)/Cop <1078 0.11X107¢ 035x10~5 0.43%10-* 0.31x107%  0.16x107% 063x10~2 020x10~! 056%10~! 092x10-!
wer — Co <107% <10-8 <10-8 <1078 0.15%1077  0.14X107° 049x10™* 0.10x10"2 0.16x10~! 0.72x10!
Crnean = Co <10-8 <108 <10-8 <10-8 ~058x1077 —0.92x107% 036x1075 0.43x1073 0.10x10~' 052x10-"
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Fig. 4. Comparison of approximation errors.

approximation is about an order of magnitude more accurate
than the eight-lobed approximation, but this result is offset by
the reduction in the values of the (C,,,,— C,,.)/Cy as & be-
comes smaller.

max

V. COMMENTS

It is interesting that both Table I and Table II show that
Crean — Co becomes positive for sufficiently large values of 8.
The fact that the calculation for the four-lobed case involves, at
most, the determination of K and K’ using the rapidly converg-
ing AGM series virtually rules out the possibility of a numerical
error. The computation for the eight-lobed case is more in-
volved, but here great care was taken to check the accuracy of
each step in the calculations. For example, each complex value
of w obtained by applying the Gauss descending transformation
to the given v and k& was checked for accuracy by resubstituting
into v =sn(w, k). It is believed that these results are accurate to
the order of 10~°.

In both cases, it will be observed that the geometric mean of
Cpax and C.. is a more accurate approximation than their
average. It was only because the error in the average of C,
and C_,, changes sign for smaller values of 8, however, that the
logarithm of the error in the average is plotted in Fig. 4.
Needless to say, the linearity of the data for the two cases and
their parallelism were a surprise.
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A New Procedure for Interfacing the Transmission
Line Matrix (TLM) Method with
Frequency-Domain Solutions

Zhizhang Chen, Wolfgang J. R. Hoefer, and Michel M. Ney

Abstract —This paper presents a new procedure that interfaces the
transmission-line matrix method (TLM) with frequency-domain solu-
tions of electromagnetic fields. Frequency-domain solutions are trans-
formed into appropriate time-domain sequences using the discrete
Fourier transform (DEFT). Hence, the corresponding boundary Johns
matrix can be determined with minimum computational effort. The
subsequent treatment consists in convolving the streams of TLM im-
pulses incident on the boundary with a Jehns matrix generated with the
new approach. The method is applied to obtain the time-domain reflec-
tion sequence of wide-band absorbing terminations in a rectangular
waveguide in the dominant mode operation. In addition, the time-domain
analysis of pulse penetration through a sheet with high, but finite,
conductivity is presented. Good results demonstrate the efficiency of the
proposed procedure.

1. INTRODUCTION

The transmission line matrix (TLM) method has been exten-
sively applied to solve electromagnetic wave propagation, diffu-
sion, and network problems in the time domain [1]-[3]. With its
flexibility and the simplicity of the basic algorithm, the TLM
method can handle arbitrary geometries and account for realis-
tic features that are often neglected with other methods. Re-
cently, two- and three-dimensional transmission line matrix mi-
crowave field simulators using new concepts and procedures
have been presented [4].

In order to characterize structures with large dimensions. the
TLM technique requires large memory space and CPU time.
More recently, a general partitioning technigue based on the
Johns matrix concept [5], [6] has been developed to overcome
this problem for certain applications.

In the following, a new procedure for interfacing TLM tech-
niques with frequency-domain solutions is described: either scat-
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